Skip links
View
Drag

COE

Tags

Enhance Your Business Security with the SecOps Solution from ServiceNow

SecOps (Security Operations) from ServiceNow is an approach to managing system and data security within an organization, focusing on threat detection to provide visibility into cybersecurity risks and reduce vulnerabilities in the system. It also enables you to prioritize issues or risks effectively. Professional Collaboration between Business Service Management (BSM) and Information Security (Infosec)  BSM, experts in IT operations with experience in using tools or software, has collaborated with Infosec, specialists in security with experience in security tools.  The result is a more comprehensive threat protection system. This enables efficient and responsive implementation of security operations, addressing issues quickly while enhancing business opportunities. It also elevates system security beyond previous levels. Which Problems Can SecOps Solutions Help?  Threat Detection: Enables businesses to identify and respond to threats quickly, preventing damage and reducing potential risks to the system. Prioritization of Issues: Helps in identifying and prioritizing the most critical

MFEC

MFEC

Tags

Unlock Business Sustainability with Digital Sustainability Solution

Digital Sustainability Solution is a comprehensive sustainability service with certified consulting and auditing partners that meet international standards, utilizing digital tools to help you strategize and create perfect sustainability reports. Digital Sustainability Solution consists of 3 services:  1.Data Discovery: A comprehensive sustainability solution for sustainability, partnered with consulting and auditing firms that are certified to meet international standards, utilizing digital tools to help you in planning strategies and creating sustainability reports with precision and effectiveness.  2.Sustainability Platform: A platform which can assist with the calculations and reporting according to various standards such as TGO, ISO 14064-1, GRI, TCFD, IFRS, and SASB. 3.Data Visualization: A tool that analyzes and visualizes sustainability data to provide business insights, enabling businesses to make informed decisions in planning investments and operations aligned with sustainability policies. How Can Businesses Overcome Challenges with the Digital Sustainability Solution?  Managing Complex Data: Reduces manual processes and simplifies data management

MFEC

MFEC

Tags

5 Factors to Consider Before Training Your Own Artificial Intelligence Model

Developing your own Artificial Intelligence (AI) model is a significant step that can enhance an organization’s capabilities and help in competing more effectively in the market. However, before embarking on this process, there are key considerations to carefully evaluate, to ensure that the investment and AI development are worthwhile and meet genuine needs. The Problem to Be Solved AI development should start with a clear identification of the problem to be solved. It is essential to know the purpose of creating the AI model. For instance, existing market models may not sufficiently meet business needs, there might be concerns about data security, or there could be extremely high usage that makes existing services impractical. Analyzing the problem is a crucial step to ensure that the developed AI effectively addresses these issues. Availability of Data Data is the heart of training AI models. If the problem to be solved involves making the model

MFEC

MFEC

Tags

Low Code: The Future of Enterprise Application Development

One of the key factors of digital transformation is the automation of processes within the organization. The organization should be able to monitor and process data from any process. Most organizations find software development to be the biggest obstacle, as the process can be time-consuming and does not meet the needs of employees. It also cannot respond immediately to changes in the work process.  Low code is a simple approach to application development that has been around for a long time. Microsoft Power Apps, a well-known low-code platform, was launched in 2015. Many enterprise low-code vendors provide services, often by modifying specialized business applications. More recently, some startups like Retool have also developed platforms specifically for low-code application development   As a result, many enterprises are starting to invest more in low-code open-source projects such as AppSmith, ToolJet and Budibase, which became mainstream around 2020 to 2022, although they were launched

MFEC

MFEC

Tags

AI ไม่ใช่คำตอบสุดท้ายของการทำ Automation

ในปัจจุบัน AI เป็นเทคโนโลยีที่ได้รับความนิยมเป็นอย่างมาก หลังจากความก้าวหน้าของเทคโนโลยีทำให้สามารถนำ Deep Learning มาปรับใช้ได้ในชีวิตจริง ด้วยการกลับมาของ Convolutional Neural Networks (CNN) โดยพื้นฐานแล้วมีทฤษฎีที่อธิบายความเกี่ยวข้องของ Machine Learning กับ AI อยู่ 2 ทฤษฎี ทฤษฎีแรกอธิบายว่า Machine Learning และ Deep Learning เป็นส่วนหนึ่งของ AI และทฤษฎีที่สองอธิบายว่า Machine Learning เกี่ยวข้องกับ AI แค่ในส่วนที่เกี่ยวกับการตัดสินใจเท่านั้น ที่ผ่านมา ได้มีการนำ AI ไปใช้ประโยชน์ในหลายรูปแบบ เช่น เทคโนโลยี Face Recognition, Image Recognition และ Self-Driving Car และมีการนำ Machine Learning ไปประยุกต์ใช้กับแอปที่หลากหลายในสายงาน Cyber Security ไม่ว่าจะเป็น Malware Detection หรือ Anti-Spam อย่างไรก็ตาม AI ไม่ใช่คำตอบของทุกสิ่ง และไม่สามารถทดแทนการตัดสินใจของมนุษย์ได้ 100% Machine Learning ที่เป็นกลไกสำคัญของการทำงานของ AI อาศัยข้อมูลในการตัดสินใจและการตัดสินใจเหล่านั้นมีโอกาสที่จะผิดพลาดได้ ทำให้เกิดเป็นช่องโหว่ที่อาจะทำให้เกิดอันตรายหรือสามารถนำไปใช้ประโยชน์ในทางที่ผิดได้ เช่น อุบัติเหตุของรถ Tesla ที่เกิดจากความผิดพลาดในระบบตรวจจับ และเทคโนโลยี Deepfake ที่ใช้ปลอมแปลงเป็นบุคคลสำคัญ งานวิจัยของ Ian Goodfellow ในปี 2017 ชี้ให้เห็นถึงช่องโหว่ของ Machine Learning ของ CNN ผ่าน Adversarial Example Attack หรือการโจมตี Machine learning โดยการบิดเบือนข้อมูลต้นฉบับ ซึ่งสามารถทำได้หลายวิธี ได้แก่ Fast Gradient Sign Method (FGSM) การบิดเบือนข้อมูลโดยการเพิ่มน้ำหนักของข้อมูลเพื่อผลักให้ไปอยู่ในเขตข้อมูลที่ผิด โดยการจำแนกประเภทของข้อมูลจะอิงตามน้ำหนักของข้อมูล ทำให้สามารถระบุได้ว่าจะให้ผิดเป็นอะไร แค่ต้องรู้ว่าผลักไปทิศทางไหนเพื่อให้ Network จำแนกข้อมูลเป็นไปตามที่ต้องการ One-Pixel Attack การบิดเบือนข้อมูลโดยการแก้ไขเพียง 1 พิกเซลในตำแหน่งที่ใช้ในการจำแนกประเภทของข้อมูลจากรูป ไม่สามารถระบุผลลัพธ์ได้อย่างเฉพาะเจาะจง แต่สามารถเปลี่ยนข้อมูลให้เป็นสิ่งที่ไม่ควรจะเป็นได้ ตัวอย่างเช่น ทำให้ Machine Learning อ่าน ถ้วยชา เป็น จอยสติ๊ก Adversarial Patch การบิดเบือนข้อมูลโดยการเพิ่มองค์ประกอบอื่น หรือ Patch เข้าไปในข้อมูลต้นฉบับ เช่น การเพิ่มรูปที่ถูกสร้างเพื่อการโจมตีโดยเฉพาะลงไปในรูปเป้าหมาย ก็สามารถเปลี่ยนคีย์บอร์ดเป็นหอยสังข์ได้ เพราะ Patch นั้นมีค่า Feature ที่โดดเด่นกว่าเป้าหมาย ทำให้ Machine Learning ตรวจจับได้เป็นสิ่งที่ Patch กำหนดให้เป็น นอกจากวิธีการที่ยกมา ก็ยังมีรูปแบบการโจมตีอื่น ๆ อีกมากมาย เช่น 3D Adversarial Example,

MFEC

MFEC

Tags

“มองอนาคต 5 เทรนด์ การพัฒนาซอฟต์แวร์ที่ถึงเวลาต้องลองใช้งาน”

เริ่มที่เทรนด์แรก Low Code เทคโนโลยีนี้มีการใช้งานมายาวนาน ในช่วงโควิดที่ผ่านมา โครงการ Open Source ได้เติบโตอย่างรวดเร็วมาก ยกตัวอย่าง 3 โปรเจกต์ในช่วงโควิด ได้แก่ Appsmith, ToolJet และ Budibase ซึ่งบางตัวเกิดขึ้นมาก่อนโควิด แต่ในช่วงโควิดการพัฒนาเกิดขึ้นอย่างรวดเร็ว มีการลงทุนอย่างมากในช่วงปี 2021 ที่ผ่านมา และในปีนี้โดยรวมของตลาด Low Code มีการเติบโตถึง 25% โดยตลาด Low Code นั้น เรามักมองรวมเทคโนโลยีหลายตัว เช่น RPA ก็อาจจะมองว่าเป็นส่วนหนึ่งของ Low Code แต่ที่เติบโตค่อนข้างมากตัวหนึ่ง คือ Low-Code Application Platform ที่ใช้พัฒนาแอปพลิเคชันติดต่อผู้ใช้ โดยเราสามารถเชื่อมระบบเข้ากับ Database, Google Sheet, Microsoft Excel แล้วนำมาทำแอปเป็นหน้าจอ UI เป็นอีกเทรนด์หนึ่งที่เติบโตขึ้นมาก เทรนด์ที่ 2 ความนิยมในภาษาใหม่และเฟรมเวิร์กใหม่ ๆ ยังคงมีมาอย่างต่อเนื่อง ถ้าใครได้ทำงานพัฒนาซอฟต์แวร์มานาน เราก็จะพบว่าเฟรมเวิร์กที่เราใช้งานอาจจะต้องเปลี่ยนไปเป็นช่วง 3-5 ปี แม้หลายปีที่ผ่านมา React และเฟรมเวิร์กในกลุ่มเดียวกันจะได้รับความนิยมอย่างกว้างขวาง แต่ก็มีเทคโนโลยีแพลตฟอร์มที่ได้รับความนิยมมากขึ้นเรื่อย ๆ ตัวหนึ่งก็คือ Svelte ที่การใช้งานยังไม่เยอะมาก แต่ผลสำรวจของ Stack Overflow กลับแสดงให้เห็นว่าผู้ใช้นั้นชื่นชอบเป็นอย่างมาก และอัตราการใช้งานก็เพิ่มขึ้นอย่างรวดเร็ว นอกจากนี้ยังมี เฟรมเวิร์กตัวหนึ่งที่เริ่มเด่นขึ้นมา คือ Phoenix ที่ใช้ภาษา Elixer แม้อัตราการใช้งานยังน้อยมากแต่ผู้ใช้งานแสดงความชื่นชอบเกิน 80% นับเป็นเฟรมเวิร์กที่ผู้ใช้รักที่สุดตัวหนึ่ง สำหรับภาษาโปรแกรมที่กำลังเป็นที่นิยมคือภาษา Rust ที่ก่อนหน้านี้ก็เคยติดอันดับภาษาโปรแกรมมิ่งที่ผู้ใช้ชื่นชอบอย่างมากเป็นเวลานาน ปีที่ผ่านมาบริษัทขนาดใหญ่อย่าง AWS, Microsoft รับวิศวกรในภาษา Rust เพิ่มมากขึ้น ทั้งการใช้ภาษา Rust ในบางโครงการของบริษัทเอง และการนำมาช่วยพัฒนาตัวภาษา เทรนด์ที่ 3 คือ AI จะยังไม่มาแย่งงานเราในเร็ว ๆ นี้ (แต่ในอนาคตก็ไม่แน่) ด้วยกระแสนิยมของ ChatGPT ในช่วงที่ผ่านมา หลายคนก็อาจมีคำถามว่า เทคโนโลยีนี้จะทำให้โปรแกรมเมอร์ตกงานไหม คำตอบคือ ปีนี้ยัง! กลับกันคือเราน่าจะเห็นการทำงานของโปรแกรมเมอร์ที่มี AI มาช่วยทำงานมากขึ้นเรื่อย ๆ ปัจจุบัน AI สามารถช่วยงานได้มากขึ้น สามารถแปลงคอมเมนต์เป็นโค้ดได้อย่างชาญฉลาด หลายครั้งสามารถเขียนทั้งฟังก์ชัน หรือเขียนตัวทดสอบแอปพลิเคชันได้อย่างแม่นยำรวดเร็ว แต่ AI ก็ยังต่างจากคำตอบของมนุษย์ที่มีความรู้อย่างแท้จริง AI จะประมวลความรู้จากแหล่งต่าง ๆ ซึ่งอาจไม่ถูกต้องทั้งหมด และจุดอ่อนของ AI มันไม่ได้ทดสอบคำตอบของมันจริง ๆ ต่างจากโปรแกรมเมอร์ที่ก่อนเราจะนำงานไปส่ง เราก็ต้องทดลองคำตอบของเราก่อนว่าทำงานได้จริงอย่างที่ต้องการหรือไม่ อย่างไรก็ตาม AI ก็เป็นเครื่องมือที่ช่วยในการเขียนโปรแกรมได้ โดยมีเครื่องมือที่แนะนำให้ใช้ ได้แก่ GitHub Copilot และ Tabnine โดยควรใช้อย่างระมัดระวัง อย่าลืมว่าโค้ดเป็นความรับผิดของผู้เขียน แม้ AI จะมีข้อจำกัดแต่ก็มีแนวโน้มที่จะมีการพัฒนาอย่างต่อเนื่อง เป็นอีกหนึ่งเทคโนโลยีที่น่าจับตามอง เทรนด์ที่

MFEC

MFEC

Tags

Cyber Security Forecast 2023

Hacker ในปัจจุบันที่อยู่รอบตัวเรานั้นส่วนมากเป็นบุคคลธรรมดาทั่วไป และไม่ใช่พนักงานในภาครัฐ ทุกวันนี้ไม่ว่าเราหาข้อมูลความรู้อะไรก็ตาม เรามักจะชอบหาข้อมูลผ่านสื่อสังคมออนไลน์ หรือเรียกว่า Social Media ซึ่งการให้ความสำคัญกับ Social Media ที่มากเกินไป ทำให้ Hacker มีแรงจูงใจที่จะเข้าไปโจมตีให้ระบบคนอื่นมีปัญหา เพราะเขาจะมีเวทีเพื่อแสดงให้คนอื่นได้เห็นว่า สิ่งที่เขาทำสำเร็จมันเกิดความสำเร็จ เห็นได้ชัดว่าคนหันมาให้ความสนใจในเรื่องนี้ มีการแข่งขันโจมตี แข่งขันหาช่องโหว่ในระบบความปลอดภัย ประเด็นที่ 1 สิ่งที่น่าจับตามอง คือ Ransomware ซึ่งเป็นไวรัสชนิดหนึ่งที่ถูกออกแบบมาเพื่อทำการเรียกค่าไถ่ในการปลดล็อคไฟล์ โดยที่เป้าหมายของการทำไวรัสชนิดนี้ คือการเข้าถึงข้อมูลสำคัญภายในบริษัท ก่อนหน้านี้เป้าหมายอันดับ 1 ของการถูก Ransomware คือฝั่งอเมริกา แต่ปัจจุบันทิศทางของการถูก Ransomware กำลังเปลี่ยนไป คาดการณ์ว่าปีหน้า Ransomware จะทำการแพร่กระจายอย่างหนักไปยังฝั่งยุโรป แต่สิ่งที่น่ากลัวกว่าการโจมตี Ransomware นั่นคือการถูกโจมตีที่อยู่ในรูปแบบขู่กรรโชกจะเพิ่มมากขึ้น ประเด็นที่ 2 เป็นเรื่องของเหตุการณ์ที่เราคุ้นเคยกันอยู่แล้ว คือ IO ย่อมาจาก Information Operation ยุทธการทางข้อมูลข่าวสาร เป็นการสู้ด้วยข้อมูลข่าวสาร เพื่อสร้างความน่าเชื่อถือและสร้างกระแสความได้เปรียบมาอยู่ในฝ่ายตนเอง เป็นกระบวนการที่องค์กรใดองค์กรหนึ่งส่งข้อมูลที่อยากส่งไปให้ถึงปลายทาง หาทางวางแผนให้คนเชื่อว่าข้อมูลที่ส่งนั้นเป็นความจริง หรือทำให้สิ่งที่มีอยู่จริงนัั้นไม่เป็นจริง โดยผ่านกระบวนการ IO ซึ่งในอนาคตจะมีการรับจ้างทำ แทนที่หน่วยงานหรือองค์กรนั้น ๆ จะทำเอง ประเด็นที่ 3 Password-less ที่คุ้นเคยกันดี หลักการนี้ไม่ต้องใช้ Password ในการ Log-in แต่ใช้การ Scan QR-Code แทน แนวโน้มทิศทางการใช้ชีวิตในอนาคตก็จะเปลี่ยนแปลงไปอย่างสิ้นเชิง มือถือจะกลายเป็นชีวิตของพวกเรา จากเดิมที่ Hacker มุ่งโจมตีไปที่ Device สิ่งที่จะได้ก็จะได้แค่ข้อมูลที่อยู่ใน Device นั้น แต่ปัจจุบันการโจมตีจะมุ่งไปที่ Identity ถ้าเราได้ Identity นั้นมา เราก็จะสามารถยึดครองข้อมูลได้ทั้งหมด เพราะฉะนั้นการที่จะเข้ามาอยู่ในโลก IT หรือโลกของ Cyber เราทุกคนต้องระวังตัวกันให้มากขึ้น เพราะขณะที่ Hacker ก็ยังมีการปรับตัว มีลูกเล่นที่แพรวพราวมากขึ้น รูปแบบการโจมตีที่เปลี่ยนแปลงไป จาก Call Center เป็นการโจมตีรูปแบบใหม่ที่เป็นพัสดุ ซึ่งจะไม่มีทางรู้ได้เลย จนกว่าเราจะเปิดดู นอกจากนี้เรายังต้องเฝ้าระวังการโจมตีในระดับประเทศ จากปัญหาสงครามระหว่างยูเครนและรัสเซีย เนื่องจากรัสเซียได้เริ่มจู่โจมประเทศอื่น ๆ ผ่านการโจมตีทางไซเบอร์ สู่ประเทศในทวีปเอเชีย Cr. https://www.mandiant.com/…/mandiant-security-forecast…

MFEC

MFEC

Tags

IoT Security เมื่อภัยคุกคามไม่ได้อยู่แค่ในคอมพิวเตอร์

เบื้องต้นเรามาดูความหมายของแต่ละคำของ IoT หรือ Internet of Things โดยเริ่มที่– Internet หมายถึง ระบบเครือข่าย– Things หมายถึง อุปกรณ์ ดังนั้นหากแปลตรงตัว Internet of Things หมายถึง อุปกรณ์ที่สามารถเชื่อมต่อกับอินเตอร์เน็ต ซึ่ง IOT มีอยู่ในชีวิตประจำวันของเราทั่วไป เช่น ในด้านอุตสาหกรรม เครื่องจักรกลต่าง ๆ พอมีการประมวลผลก็ต้องมีการประมวลผลที่รวดเร็ว ดังนั้นการส่งข้อมูลจึงต้องทำผ่านระบบ IoT ด้านอุปกรณ์ภายในบ้าน เช่น กล้องวงจรปิดที่สามารถดูผ่านมือถือได้ก็ถือว่าเป็นอุปกรณ์ IoT เช่นกัน และด้านอุปกรณ์ภายในเมือง เช่น สัญญาณจราจร โดยจะใช้ระบบ IoT ในการนับจำนวนรถ เปลี่ยนสัญญาณไฟจราจรเพื่อลดการติดขัดของจราจร จากที่กล่าวมาอุปกรณ์ IoT ล้วนมีประโยชน์ต่อเรา แต่หากจะมองให้ลึกลงไปถึงด้านความปลอดภัย อุปกรณ์พวกนี้ถือเป็นทางผ่านชั้นดีให้กับพวกแฮกเกอร์ในการโจรกรรมข้อมูลหรืออื่น ๆ มีตัวอย่างเช่น 1. การโจมตีทางไซเบอร์ที่ประเทศสหรัฐอเมริกาโดยการใช้ Ransomware (การโจมตีทางไซเบอร์เพื่อเรียกค่าไถ่) โจมตีบริษัท Colonial Pipeline บริษัทท่อส่งน้ำมันไปทางตะวันออกเฉียงใต้ของสหรัฐอเมริกา ทำให้สหรัฐอเมริกาขาดแคลนน้ำมันในบางรัฐถึง 4 วัน มีการประกาศสถานการณ์ฉุกเฉินและสุดท้ายบริษัทต้องจ่ายค่าเสียหายรวม 4.4 ล้านเหรียญสหรัฐ 2. เหตุการณ์ต่อมามีการใช้อุปกรณ์ IoT เป็นช่องทางในการโจมตี เกิดขึ้นที่คาสิโนแห่งหนึ่งในสหรัฐอเมริกา โดยผู้ก่อเหตุดึงเอาข้อมูลผ่านทางแท็งก์น้ำในตู้ปลาของคาสิโน ซึ่งแฮกเกอร์ใช้อุปกรณ์ IoT ตัวนี้เป็นทางผ่านเพื่อเข้าถึงเครือข่ายและเอาข้อมูลรายชื่อลูกค้าของคาสิโน 3. อีกเหตุการณ์คือ Mirai ไวรัสที่สามารถฝังตัวในอุปกรณ์ IoT ได้ทำการโจมตีแบบ DDos (การโจมตีทางไซเบอร์ โดยการส่งคำขอเรียก เว็บไซต์หรือบริการทางคอมพิวเตอร์พร้อม ๆ กัน ทำให้บริการนั้นไม่สามารถใช้งานได้ในระยะเวลาหนึ่ง) ไปที่ระบบ DNS (ระบบแปลงชื่อเว็บไซต์ในบราวเซอร์) โดยเหตุการณ์นี้ทำให้ผู้ใช้งานส่วนหนึ่งไม่สามารถใช้งานเว็บไซต์ได้ในระยะเวลาหนึ่ง 4. อีกเหตุการณ์ที่เกิดขึ้นในประเทศไทยเมื่อปี 2554 มีการแฮกกล้องวงจรปิดเรือนจำ และนำภาพจากกล้องมาสตรีมมิ่งแบบออนไลน์ ซึ่งส่งผลกระทบต่อความปลอดภัยของเรื่อนจำ และผู้ต้องขัง ในบ้านทั่วไปก็มีเหตุการณ์นำภาพจากกล้องวงจรปิดในบ้าน มาเผยแพร่สู่สาธารณะเช่นกัน 5. กลับมาที่ต่างประเทศ มีกลุ่มแฮกเกอร์กลุ่มหนึ่ง ได้แฮกระบบของรถยี่ห้อหนึ่งจนทำให้ระบบเบรกรถยนต์ไม่สามารถทำงานได้ จน FBI ได้ออกมาเตือนว่าเป็นช่องโหว่ของระบบ รวมถึงรถยนต์อย่าง Tesla จากการทำงานในระบบที่สามารถควบคุมได้ผ่านทางระยะไกลการเปิดปิดรถยนต์ผ่านระบบ Raspberry Pi ได้ เป็นต้น โดยทั้งหมดนี้เพราะ IoT เป็นอุปกรณ์ที่สามารถควบคุมได้จากระยะไกล และด้วยขนาดที่เล็กจนทำให้ความปลอดภัยในตัวของอุปกรณ์ไม่สูง จึงเป็นช่องโหว่ในการโจมตีได้อย่างง่ายดาย เราสามารถป้องกันได้โดยเริ่มจาก หาจุดการติดตั้งอุปกรณ์ IoT ทำการเช็กว่าติดจุดไหนจะมีความเหมาะสมมากที่สุด การออกแบบระบบไม่ให้สามารถเข้าถึงตัวระบบจากระยะไกลได้โดยตรง อาจจะทำให้ระบบต้องมาผ่านทาง Cloud ต่อด้วย Security ก่อนที่จะผ่าน Gateway เป็นต้น สุดท้ายนี้อยากฝากไว้ว่าเราไม่สามารถรักษาความปลอดภัยจากอุปกรณ์ IoT ได้ 100 % แต่เราสามารถตระหนักรู้ในเรื่องของอุปกรณ์ IoT และ Cyber Security ต่าง ๆ ก็จะสามารถลดความเสี่ยงของการใช้อุปกรณ์อิเล็กโทรนิกส์ที่เชื่อมต่อกับระบบ IoT ได้เช่นกัน

MFEC

MFEC